The generator matrix
1 0 1 1 1 0 1 1 0 1 1 0 X 1 1 1 1 0 1 X 1 1 1 0 1 1 0 1 X 1 0 1 1 1 1 X 1 1 1 1 X 1 0 1 0 1 1 1 X 1 1 1 1 1 1 1 1 0 1 X
0 1 1 0 1 1 0 1 1 X X+1 1 1 0 X+1 0 X+1 1 X+1 1 X 0 X+1 1 X+1 0 1 0 1 X+1 1 X+1 0 0 X 1 X X+1 X+1 0 1 X 1 X 1 1 1 1 1 0 0 1 1 X 0 X+1 X 1 0 0
0 0 X 0 0 0 0 0 0 0 X 0 0 X X X X 0 0 0 0 X X X X 0 0 X X X X 0 0 X 0 X 0 X 0 X X 0 0 X X X 0 0 X X X X 0 X X 0 X X X X
0 0 0 X 0 0 0 0 0 X 0 0 0 0 X X 0 X X X X X X X X 0 X X 0 0 0 X 0 X 0 X X X X 0 0 X X X X X 0 X 0 0 0 X X X X X 0 X 0 0
0 0 0 0 X 0 0 0 0 0 X X X X 0 X X X X X 0 X X X 0 X 0 X X 0 X X X X X 0 X X X X X 0 0 0 X 0 X X X 0 X 0 0 0 0 0 X 0 X X
0 0 0 0 0 X 0 0 X 0 0 X 0 X 0 X 0 X 0 0 0 X X X X 0 X 0 X X 0 X 0 0 X X X 0 X 0 X X 0 0 X 0 X 0 0 X 0 0 0 X 0 X 0 X X X
0 0 0 0 0 0 X 0 X X 0 0 X X 0 0 X 0 X 0 X X X X 0 0 0 0 X X X 0 X X 0 X 0 0 X 0 0 X X 0 0 X 0 0 X 0 0 X X X 0 X X 0 0 X
0 0 0 0 0 0 0 X X 0 X 0 X X X 0 0 X 0 X X X 0 X X X 0 0 X X 0 0 X X 0 0 X X 0 X X X X 0 0 0 X 0 X X 0 X 0 0 0 X 0 0 X X
generates a code of length 60 over Z2[X]/(X^2) who´s minimum homogenous weight is 52.
Homogenous weight enumerator: w(x)=1x^0+90x^52+68x^54+195x^56+108x^58+143x^60+92x^62+142x^64+116x^66+45x^68+9x^72+9x^76+5x^80+1x^84
The gray image is a linear code over GF(2) with n=120, k=10 and d=52.
This code was found by Heurico 1.16 in 0.188 seconds.