The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 X 1 X 1 1 1 1 1 X 1 X 1 1 1 X 1 X X 1 1 1 1 1 1 1 0 X 1 X 1 1
0 X 0 0 0 0 0 0 0 0 0 0 0 X X X 0 0 0 0 X X X X 0 X X 0 X X 0 X 0 0 0 X X 0 0 X X X 0 0 X X 0 0 X 0 X X X X X X 0 0 X X X X 0 0 X X X 0 X X X 0 X X X X X 0 X X X 0 0 0 X X X X 0 0 X X 0
0 0 X 0 0 0 0 0 0 0 0 X X X X X 0 X X X 0 X X X 0 X X 0 0 0 0 0 X X 0 X 0 0 0 0 X 0 0 X 0 0 0 X 0 0 X 0 X X 0 X X X 0 X 0 X 0 0 0 X 0 X 0 X X X X 0 0 0 0 0 X 0 X 0 X X X 0 X 0 0 0 X 0 0
0 0 0 X 0 0 0 0 0 0 X X X 0 X X 0 X X 0 0 0 0 0 0 0 0 X 0 X X 0 X 0 X X 0 0 X X X X 0 0 X 0 0 0 X 0 X X 0 0 X X 0 X X X X X X X 0 0 0 X X X 0 X X X 0 0 X X X X X X X X X X 0 0 X X 0 0 X
0 0 0 0 X 0 0 0 0 0 X 0 X 0 X 0 X 0 X X X 0 0 X 0 X X X X X X X 0 0 X 0 X X 0 X X 0 X 0 0 0 0 X X 0 0 X X 0 X X 0 X X 0 X 0 0 0 0 X 0 X X 0 X X 0 0 X 0 0 0 X 0 X X X 0 X 0 X X 0 X 0 0 0
0 0 0 0 0 X 0 0 0 X 0 0 X 0 0 X X X X 0 X 0 X X 0 X 0 0 X X X 0 X X 0 X 0 X 0 X X X X 0 0 X 0 0 0 0 0 0 0 X 0 X 0 0 0 X X 0 X 0 X X 0 0 0 X 0 X 0 0 0 0 0 X 0 X X X X X 0 X X X 0 X 0 X X
0 0 0 0 0 0 X 0 0 X 0 X 0 X 0 0 0 X 0 0 0 X X X X X 0 0 X 0 X 0 0 0 X X 0 X X X 0 0 X X 0 0 X X X X 0 0 0 X 0 0 X X 0 0 X 0 0 X 0 0 X X X 0 0 X 0 X X X X 0 0 X X 0 X X X 0 X X 0 0 X 0 0
0 0 0 0 0 0 0 X 0 X X X 0 X 0 X 0 0 X X X 0 0 X X X X 0 0 X 0 0 0 0 0 X 0 X X 0 X 0 X 0 0 X X X X 0 X X 0 0 0 X 0 X 0 0 0 0 0 0 X X X 0 0 0 0 0 X 0 X 0 X 0 X X X X 0 X 0 X 0 0 X X 0 0 X
0 0 0 0 0 0 0 0 X X X 0 0 X X X X X 0 X 0 X 0 X X 0 X 0 X X X 0 X X X X X 0 0 X X X X X X 0 0 X 0 X 0 X X X X 0 0 0 0 0 0 X 0 0 X X 0 X 0 X 0 0 0 0 0 X X 0 0 X 0 0 X 0 X 0 0 X X X 0 0 0
generates a code of length 93 over Z2[X]/(X^2) who´s minimum homogenous weight is 82.
Homogenous weight enumerator: w(x)=1x^0+34x^82+52x^84+8x^85+64x^86+32x^87+56x^88+68x^89+44x^90+92x^91+37x^92+100x^93+29x^94+108x^95+40x^96+76x^97+28x^98+20x^99+30x^100+4x^101+24x^102+4x^103+26x^104+18x^106+5x^108+9x^110+5x^112+3x^114+4x^116+2x^118+1x^162
The gray image is a linear code over GF(2) with n=186, k=10 and d=82.
This code was found by Heurico 1.16 in 0.533 seconds.